skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gromadzki, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Context.Identifying black holes is essential for our understanding of the development of stars and can reveal novel principles of physics. Gravitational microlensing provides an exceptional opportunity to examine an undetectable population of black holes in the Milky Way. In particular, long-lasting events are likely to be associated with massive lenses, including black holes. Aims.We present an analysis of the Gaia18ajz microlensing event reported by the Gaia Science Alerts system. Gaia18ajz is a long-timescale event exhibiting features indicative of the annual microlensing parallax effect. Our objective is to estimate its lens parameters based on the best-fitting model. Methods.We used photometric data obtained from the Gaia satellite and terrestrial observatories to investigate a variety of microlensing models and calculate the most probable mass and distance to the lens, taking into consideration a Galactic model as a prior. Subsequently, we applied a mass–brightness relation to evaluate the likelihood that the lens is a main sequence star. We also describe theDarkLensCode(DLC), an open-source routine that computes the distribution of probable lens mass, distance, and luminosity employing the Galaxy priors on stellar density and velocity for microlensing events with detected microlensing parallax. Results.We modelled the Gaia18ajz event and found its two possible models, the most probable Einstein timescales for which are 316−30+36days and 299−22+25days. Applying Galaxy priors for stellar density and motion, we calculated a most probable lens mass of 4.9−2.3+5.4 Mlocated at 1.14−0.57+0.75 kpc, and a less probably mass of 11.1−4.7+10.3 Mlocated at 1.31−0.60+0.80 kpc. Our analysis of the blended light suggests that the lens is likely a dark remnant of stellar evolution rather than a main sequence star. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. We present a comprehensive photometric and spectroscopic study of the Type IIP supernova (SN) 2018is. TheVband luminosity and the expansion velocity at 50 days post-explosion are −15.1 ± 0.2 mag (corrected for AV= 1.34 mag) and 1400 km s−1, classifying it as a low-luminosity SN II. The recombination phase in theVband is shorter, lasting around 110 days, and exhibits a steeper decline (1.0 mag per 100 days) compared to most other low-luminosity SNe II. Additionally, the optical and near-infrared spectra display hydrogen emission lines that are strikingly narrow, even for this class. The Fe IIand Sc IIline velocities are at the lower end of the typical range for low-luminosity SNe II. Semi-analytical modelling of the bolometric light curve suggests an ejecta mass of ∼8 M, corresponding to a pre-supernova mass of ∼9.5 M, and an explosion energy of ∼0.40 × 1051erg. Hydrodynamical modelling further indicates that the progenitor had a zero-age main sequence mass of 9 M, coupled with a low explosion energy of 0.19 × 1051erg. The nebular spectrum reveals weak [O I]λλ6300,6364 lines, consistent with a moderate-mass progenitor, while features typical of Fe core-collapse events, such as He I, [C I], and Fe I, are indiscernible. However, the redder colours and low ratio of Ni to Fe abundance do not support an electron-capture scenario either. As a low-luminosity SN II with an atypically steep decline during the photospheric phase and remarkably narrow emission lines, SN 2018is contributes to the diversity observed within this population. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  3. During the last 25 yr, hundreds of binary stars and planets have been discovered toward the Galactic bulge by microlensing surveys. Thanks to a new generation of large-sky surveys, it is now possible to regularly detect microlensing events across the entire sky. The OMEGA Key Projet at the Las Cumbres Observatory carries out automated follow-up observations of microlensing events alerted by these surveys with the aim of identifying and characterizing exoplanets as well as stellar remnants. In this study, we present the analysis of the binary lens event Gaia20bof. By automatically requesting additional observations, the OMEGA Key Project obtained dense time coverage of an anomaly near the peak of the event, allowing characterization of the lensing system. The observed anomaly in the lightcurve is due to a binary lens. However, several models can explain the observations. Spectroscopic observations indicate that the source is located at ≤2.0 kpc, in agreement with the parallax measurements from Gaia. While the models are currently degenerate, future observations, especially the Gaia astrometric time series as well as high-resolution imaging, will provide extra constraints to distinguish between them. 
    more » « less
  4. Gravitational microlensing is a phenomenon that allows us to observe the dark remnants of stellar evolution, even if these bodies are no longer emitting electromagnetic radiation. In particular, it can be useful to observe solitary neutron stars or stellar-mass black holes, providing a unique window through which to understand stellar evolution. Obtaining direct mass measurements with this technique requires precise observations of both the change in brightness and the position of the microlensed star. The European Space Agency’sGaiasatellite can provide both. Using publicly available data from different surveys, we analysed events published in theGaiaData Release 3 (GaiaDR3) microlensing catalogue. Here, we describe our selection of candidate dark lenses, where we suspect the lens is a white dwarf (WD), a neutron star (NS), a black hole (BH), or a mass-gap object, with a mass in the range between the heaviest NS and the least massive BH. We estimated the mass of the lenses using information obtained from the best-fitting microlensing models, source star, Galactic model, and the expected parameter distributions. We found eleven candidates for dark remnants: one WDs, three NSs, three mass-gap objects, and four BHs. 
    more » « less
  5. SN 2020zbf is a hydrogen-poor superluminous supernova (SLSN) atz = 0.1947 that shows conspicuous C IIfeatures at early times, in contrast to the majority of H-poor SLSNe. Its peak magnitude isMg = −21.2 mag and its rise time (≲26.4 days from first light) places SN 2020zbf among the fastest rising type I SLSNe. We used spectra taken from ultraviolet (UV) to near-infrared wavelengths to identify spectral features. We paid particular attention to the C IIlines as they present distinctive characteristics when compared to other events. We also analyzed UV and optical photometric data and modeled the light curves considering three different powering mechanisms: radioactive decay of56Ni, magnetar spin-down, and circumstellar medium (CSM) interaction. The spectra of SN 2020zbf match the model spectra of a C-rich low-mass magnetar-powered supernova model well. This is consistent with our light curve modeling, which supports a magnetar-powered event with an ejecta massMej = 1.5 M. However, we cannot discard the CSM-interaction model as it may also reproduce the observed features. The interaction with H-poor, carbon-oxygen CSM near peak light could explain the presence of C IIemission lines. A short plateau in the light curve around 35–45 days after peak, in combination with the presence of an emission line at 6580 Å, can also be interpreted as being due to a late interaction with an extended H-rich CSM. Both the magnetar and CSM-interaction models of SN 2020zbf indicate that the progenitor mass at the time of explosion is between 2 and 5M. Modeling the spectral energy distribution of the host galaxy reveals a host mass of 108.7M, a star formation rate of 0.24−0.12+0.41Myr−1, and a metallicity of ∼0.4Z
    more » « less
  6. Aims.We investigate the spectroscopic characteristics of intermediate-luminosity Red Transients (ILRTs), a class of elusive objects with peak luminosity between that of classical novae and standard supernovae. Our goal is to provide a stepping stone in the path to unveiling the physical origin of these events based on the analysis of the collected datasets. Methods.We present the extensive optical and near-infrared (NIR) spectroscopic monitoring of four ILRTs, namely NGC 300 2008OT-1, AT 2019abn, AT 2019ahd and AT 2019udc. First we focus on the evolution of the most prominent spectral features observed in the low-resolution spectra. We then present a more detailed description of the high-resolution spectrum collected for NGC 300 2008OT-1 with the Very Large Telescope equipped with UVES. Finally, we describe our analysis of late-time spectra of NGC 300 2008OT-1 and AT 2019ahd through comparisons with both synthetic and observed spectra. Results.Balmer and Ca lines dominate the optical spectra, revealing the presence of slowly moving circumstellar medium (CSM) around the objects. The line luminosity of Hα, Hβ, and Ca IINIR triplet presents a double peaked evolution with time, possibly indicative of interaction between fast ejecta and the slow CSM. The high-resolution spectrum of NGC 300 2008OT-1 reveals a complex circumstellar environment, with the transient being surrounded by a slow (∼30 km s−1) progenitor wind. At late epochs, optical spectra of NGC 300 2008OT-1 and AT 2019ahd show broad (∼2500 km s−1) emission features at ∼6170 Å and ∼7000 Å which are unprecedented for ILRTs. We find that these lines originate most likely from the blending of several narrow lines, possibly of iron-peak elements. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  7. We report discovering an exoplanet from following up a microlensing event alerted by Gaia. The event Gaia22dkv is toward a disk source rather than the traditional bulge microlensing fields. Our primary analysis yields a Jovian planet with at a projected orbital separation au, and the host is a ∼1.1 M ⊙ turnoff star at ∼1.3 kpc. At , the host is far brighter than any previously discovered microlensing planet host, opening up the opportunity to test the microlensing model with radial velocity (RV) observations. RV data can be used to measure the planet's orbital period and eccentricity, and they also enable searching for inner planets of the microlensing cold Jupiter, as expected from the "inner–outer correlation" inferred from Kepler and RV discoveries. Furthermore, we show that Gaia astrometric microlensing will not only allow precise measurements of its angular Einstein radius θ E but also directly measure the microlens parallax vector and unambiguously break a geometric light-curve degeneracy, leading to the definitive characterization of the lens system. 
    more » « less
  8. Abstract We report discovering an exoplanet from following up a microlensing event alerted by Gaia. The event Gaia22dkv is toward a disk source rather than the traditional bulge microlensing fields. Our primary analysis yields a Jovian planet with M p = 0.59 0.05 + 0.15 M J at a projected orbital separation r = 1.4 0.3 + 0.8 au, and the host is a ∼1.1Mturnoff star at ∼1.3 kpc. At r 14 , the host is far brighter than any previously discovered microlensing planet host, opening up the opportunity to test the microlensing model with radial velocity (RV) observations. RV data can be used to measure the planet’s orbital period and eccentricity, and they also enable searching for inner planets of the microlensing cold Jupiter, as expected from the “inner–outer correlation” inferred from Kepler and RV discoveries. Furthermore, we show that Gaia astrometric microlensing will not only allow precise measurements of its angular Einstein radiusθEbut also directly measure the microlens parallax vector and unambiguously break a geometric light-curve degeneracy, leading to the definitive characterization of the lens system. 
    more » « less
  9. We present photometric and spectroscopic observations of SN 2020xga and SN 2022xgc, two hydrogen-poor superluminous supernovae (SLSNe-I) atz = 0.4296 andz = 0.3103, respectively, which show an additional set of broad Mg IIabsorption lines, blueshifted by a few thousands kilometer second−1with respect to the host galaxy absorption system. Previous work interpreted this as due to resonance line scattering of the SLSN continuum by rapidly expanding circumstellar material (CSM) expelled shortly before the explosion. The peak rest-frameg-band magnitude of SN 2020xga is −22.30 ± 0.04 mag and of SN 2022xgc is −21.97 ± 0.05 mag, placing them among the brightest SLSNe-I. We used high-quality spectra from ultraviolet to near-infrared wavelengths to model the Mg IIline profiles and infer the properties of the CSM shells. We find that the CSM shell of SN 2020xga resides at ∼1.3 × 1016cm, moving with a maximum velocity of 4275 km s−1, and the shell of SN 2022xgc is located at ∼0.8 × 1016cm, reaching up to 4400 km s−1. These shells were expelled ∼11 and ∼5 months before the explosions of SN 2020xga and SN 2022xgc, respectively, possibly as a result of luminous-blue-variable-like eruptions or pulsational pair instability (PPI) mass loss. We also analyzed optical photometric data and modeled the light curves, considering powering from the magnetar spin-down mechanism. The results support very energetic magnetars, approaching the mass-shedding limit, powering these SNe with ejecta masses of ∼7 − 9 M. The ejecta masses inferred from the magnetar modeling are not consistent with the PPI scenario pointing toward stars > 50 MHe-core; hence, alternative scenarios such as fallback accretion and CSM interaction are discussed. Modeling the spectral energy distribution of the host galaxy of SN 2020xga reveals a host mass of 107.8M, a star formation rate of 0.96−0.26+0.47Myr−1, and a metallicity of ∼0.2 Z
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  10. We present optical and near-infrared observations of two Type Ibn supernovae (SNe), SN 2018jmt and SN 2019cj. Their light curves have rise times of about ten days, reaching an absolute peak magnitude ofMg(SN 2018jmt) = −19.07 ± 0.37 andMV(SN 2019cj) = −18.94 ± 0.19 mag, respectively. The early-time spectra of SN 2018jmt are dominated by a blue continuum, accompanied by narrow (600−1000 km s−1) He Ilines with the P-Cygni profile. At later epochs, the spectra become more similar to those of the prototypical SN Ibn 2006jc. At early phases, the spectra of SN 2019cj show flash ionisation emission lines of C III, N III, and He IIsuperposed on a blue continuum. These features disappear after a few days, and then the spectra of SN 2019cj evolve similarly to those of SN 2018jmt. The spectra indicate that the two SNe exploded within a He-rich circumstellar medium (CSM) lost by the progenitors a short time before the explosion. We modelled the light curves of the two SNe Ibn to constrain the progenitor and the explosion parameters. The ejecta masses are consistent with either what is expected for a canonical SN Ib (∼2 M) or for a massive Wolf Rayet star (> ∼4 M), with the kinetic energy on the order of 1051erg. The lower limit on the ejecta mass (> ∼2 M) argues against a scenario involving a relatively low-mass progenitor (e.g.MZAMS ∼ 10 M). We set a conservative upper limit of ∼0.1 Mfor the56Ni masses in both SNe. From the light curve modelling, we determined a two-zone CSM distribution, with an inner, flat CSM component and an outer CSM with a steeper density profile. The physical properties of SN 2018jmt and SN 2019cj are consistent with those expected from the core collapse of relatively massive envelope-stripped stars. 
    more » « less